Languages and monoids with disjunctive identity*

Lila Kari and Gabriel Thierrin Department of Mathematics, University of Western Ontario London, Ontario, N6A 5B7 Canada

Abstract

We show that the syntactic monoids of insertion-closed, deletion-closed and dipolar-closed languages are the groups. If the languages are insertion-closed and congruence simple, then their syntactic monoids are the monoids with disjunctive identity. We conclude with some properties of dipolar-closed languages.

1 Introduction

Let M be a monoid with identity 1. If $L \subseteq M$ is a subset of M and if $u \in M$, then:

$$u^{-1}L = \{x \in M | ux \in L\}, \ Lu^{-1} = \{x \in M | xu \in L\},\$$

 $L..u = \{(x, y) | x, y \in M, xuy \in L\}.$

The relations R_L and LR defined by:

$$u \equiv v \ (R_L) \Leftrightarrow u^{-1}L = v^{-1}L, \ u \equiv v \ (LR) \Leftrightarrow Lu^{-1} = Lv^{-1},$$

are respectively a right congruence and a left congruence of M, called the *right* principal and the left principal congruence determined by L. These congruences were first considered by Dubreil in [3] as a way to extend to semigroups the construction of right congruences on groups (see also [1]).

The relation P_L defined by $u \equiv v$ (P_L) $\Leftrightarrow L..u = L..v$ is a congruence of M called the *principal congruence* determined by L. This congruence was first considered in semigroups for describing their homomorphisms and a systematic study of their properties was given by Croisot in [2].

A subset $L \subseteq M$ is called *disjunctive* if the principal congruence P_L is the identity relation on M (see for example [10], [12]). Given any subset T of M, it is easy to see that the set of classes representing the elements of T is a disjunctive

 $^{^*}$ This research was supported by Grant OGP0007877 of the Natural Sciences and Engineering Research Council of Canada

set of the quotient monoid M/P_T . If $u \in M$ and if the set $\{u\}$ is disjunctive, u will be called a disjunctive element of M. In particular, it is possible for the identity 1 of a monoid M to be a disjunctive element. If this is the case, then the monoid is simple or 0-simple (see [5]). Recall that (see [1]) a monoid M is simple if for any $u, v \in M$ there exist x, y such that xuy = v. M is 0-simple if it has a zero element, and if the preceding condition holds for any two nonzero elements u, v of M. The groups and the bicyclic monoid are examples of simple monoids.

Since in this paper, monoids with disjunctive identity will be associated with special classes of languages, we recall a few definitions related to formal languages.

Let X^* be the free monoid generated by the alphabet X where the identity 1 of X^* is the empty word. Elements and subsets of X^* are called respectively words and languages over X. The congruences R_L and P_L determined by a language $L \subseteq X^*$ are called respectively the syntactic right congruence and the syntactic congruence of L. The quotient monoid X^*/P_L is called the syntactic monoid of L. The syntactic monoid plays an important role for the characterization of several interesting classes of languages (see for example [10], [12]).

In this paper, we are interested in the syntactic monoid of some classes of languages related to the operations of insertion and deletion (see [6], [8]). The following three classes of languages L are considered:

- (i) insertion-closed (or ins-closed): $u_1u_2 \in L$, $v \in L$ imply $u_1vu_2 \in L$;
- (ii) deletion-closed (or del-closed): $u_1vu_2 \in L$, $v \in L$ imply $u_1u_2 \in L$;
- (iii) dipolar-closed (or dip-closed): $u_1u_2 \in L$, $u_1vu_2 \in L$ imply $v \in L$.

We show that the syntactic monoids of insertion-closed, deletion-closed and dipolar-closed languages are the groups. If the languages are insertion-closed and congruence-simple, then their syntactic monoids are the monoids with disjunctive identity. Properties of insertion-closed or deletion-closed languages have been considered in [4]. Properties of dipolar-closed languages are given in the last section of the paper. Results associated with similar concepts in relation with codes can be found in [5].

2 Insertion and deletion closed languages

Insertion and deletion have been introduced in [6] and studied for example in [6], [7], [8], [9], as operations generalizing the catenation respectively left/right quotient of languages. For two words $u, v \in X^*$, the *insertion* of v into u is defined as

$$u \longleftarrow v = \{u_1 v u_2 | u = u_1 u_2\},$$

and the deletion of v from u as

$$u \longrightarrow v = \{x \in X^* | u = x_1 v x_2, x = x_1 x_2\}.$$

As noticed above, instead of adding (erasing) the word v to the right (from the left/right) extremity of u, the new operation inserts (deletes) it into (from) an arbitrary position of u. The result is usually a set with cardinality greater than one, which contains the catenation (left/right quotient) of the words as one of its elements. The study of insertion and deletion has triggered the consideration in [4] of two related notions. To the language $L \subseteq X^*$, one can associate the two languages ins(L) and del(L) defined by:

- (i) $ins(L) = \{x \in X^* | \forall u \in L, u = u_1 u_2 \Rightarrow u_1 x u_2 \in L\};$
- (ii) $del(L) = \{x \in Sub(L) | \forall u \in L, u = u_1xu_2 \Rightarrow u_1u_2 \in L\}$, where Sub(L) is the set of subwords of the words in L.

The set ins(L) consists of all words with the following property: their insertion into any word of L yields words belonging to L. Analogously, del(L) consists of all words x with the following property: x is a subword of at least one word of L, and the deletion of x from any word of L is included in L. The condition that $x \in Sub(L)$ has been added because otherwise del(L) would contain irrelevant elements, such as words which are not subwords of any word of L.

A language L such that $L \subseteq ins(L)$ is called *insertion-closed*. It is immediate that L is insertion-closed iff $u = u_1 u_2 \in L$, $v \in L$ imply $u_1 v u_2 \in L$.

A language L is called deletion-closed if $v \in L$ and $u_1vu_2 \in L$ imply $u_1u_2 \in L$. For example, let $X = \{a, b\}$. Then X^* and $L_{ab} = \{x \in X^* | |x|_a = |x|_b\}$ are insertion-closed languages that are also deletion-closed.

A language L such that L is a class of its syntactic congruence P_L is called a *congruence simple* or shortly a *c-simple language*. It is easy to see that L is c-simple iff $xLy \cap L \neq \emptyset$ implies $xLy \subseteq L$. Remark that, if L is a c-simple language and if $1 \in L$, then L is a submonoid of X^* .

Proposition 2.1 Let L be a language that is insertion-closed and deletion-closed. Then L is c-simple.

Proof. Suppose that $u, xuy \in L$. Since L is del-closed, $xy \in L$. Let $v \in L$. Since L is ins-closed, this implies $xvy \in L$. Hence $xLy \subseteq L$.

Lemma 2.1 If L is a c-simple language over the alphabet X and if $1 \in L$, then syn(L) is a monoid with a disjunctive identity. Conversely, if M is a monoid with a disjunctive identity, then there exists a c-simple language L over an alphabet X with $1 \in L$ and such that syn(L) is isomorphic to M.

Proof. Let e = [L] be the class of L modulo P_L . Since $1 \in L$, L is a submonoid of X^* and e is the identity of the monoid syn(L). The element e is a disjunctive element of syn(L) because L is a class of P_L .

Conversely, let X be a set of generators of M, let e be the identity of M and let X^* be the free monoid generated by X. Let $\phi: X^* \to M$ be the canonical mapping of X^* onto M defined by $\phi(x) = e$ if x = 1 and

$$\phi(x) = \phi(x_1)\phi(x_2)\cdots\phi(x_n) = x_1x_2\cdots x_n \in M$$

if $x = x_1x_2 \cdots x_n \in X^+$ with $x_i \in X$. Clearly ϕ is a morphism of X^* onto M and θ , defined by $u \equiv v(\theta)$ iff $\phi(u) = \phi(v)$, is a congruence of X^* such that X^*/θ is isomorphic to M. Let $L = \phi^{-1}(e)$. Since e is a disjunctive element of M, $\theta = P_L$ is the syntactic congruence of L, L is a class of P_L and syn(L) is isomorphic to M.

Proposition 2.2 If L is an insertion-closed language over the alphabet X, $1 \in L$, and if L is a c-simple language, then syn(L) is a monoid with a disjunctive identity. Conversely, if M is a monoid with a disjunctive identity, then there exists an insertion-closed and c-simple language L over an alphabet X with $1 \in L$ and such that syn(L) is isomorphic to M.

Proof. The first part follows immediately from Lemma 2.1, because L being ins-closed with $1 \in L$, is a submonoid of X^* . For the converse note that, by the same lemma, there exists a c-simple language L such that syn(L) is isomorphic to M. L is ins-closed, because $vw \in L, u \in L$ implies [vw] = e = [u] and therefore:

$$[vuw] = [v][u][w] = [v][w] = [vw] = e.$$

Consequently, $vuw \in L$.

A language L is called dipolar-closed or simply dip-closed if $u_1u_2 \in L$, $u_1xu_2 \in L$ imply $x \in L$. This notion is related to the operation of dipolar deletion (see [6], [9]). Recall that, for two words $u, v \in X^*$, the dipolar deletion of v from u is defined as

$$u \rightleftharpoons v = \{x \in X^* | u = v_1 x v_2, v = v_1 v_2\}.$$

In other words, the dipolar deletion erases, if possible, from u a prefix and a suffix whose catenation equals v. Remark that every nonempty dipolar-closed language L contains the empty word 1, because $u_1u_2 \in L$ implies $u_1.1.u_2 \in L$ and hence $1 \in L$. Examples and properties of dipolar-closed languages are given in the last section.

Proposition 2.3 If L is an insertion-closed, deletion-closed and dipolar-closed language over the alphabet X, then syn(L) is a group or a group with zero.

Conversely, if G is a group or a group with zero, then there exists an insertion-closed, deletion-closed and dipolar-closed language L over an alphabet X such that $\operatorname{syn}(L)$ is isomorphic to G.

Proof. By Proposition 2.1, L is a class of P_L . Let e = [L] be the class of L modulo P_L . Then, by Lemma 2.1 and Proposition 2.2, e is the identity and a disjunctive element of syn(L).

Every monoid with disjunctive identity is either simple or 0-simple (see [5]). Suppose first that syn(L) is simple and let [u] be the class of u modulo P_L . There exist $x, y \in X^*$ such that $xuy \in L$ and $xuyxuy \in L$. Since x.uyx.uy in

L and L is dip-closed, we have $uyx \in L$. This implies [u][yx] = e. Similarly xu.yxu.y and $xuy \in L$ imply $yxu \in L$, i.e. [yx][u] = e. Since every [u] has a right and a left inverse, it follows that syn(L) is a group. Suppose now that syn(L) is 0-simple. If the class [u] of u is $\neq 0$, then, because syn(L) is 0-simple, we have [x][u][y] = e for some $x, y \in X^*$, or equivalently $xuy \in L$. Since L is dip-closed, by a similar argument as before we deduce that $uyx \in L$ and $yxu \in L$. Therefore every $[u] \neq 0$ has an inverse in syn(L). Let $T = syn(L) \setminus \{0\}$ and let $r, s \in T$. If rs = 0, then, since both r and s have inverses r^{-1} and s^{-1} , we have $e = rss^{-1}r^{-1} = 0$, a contradiction. Therefore $syn(L) \setminus \{0\}$ is a group and syn(L) is a group with zero.

For the converse, let X be a set of generators of G, let e be the identity of G and let X^* be the free monoid generated by X. If $\phi: X^* \to G$ is the canonical mapping of X^* onto G, then, as above, it can be shown that ϕ is a morphism of X^* onto G. Moreover θ , defined as in Lemma 2.1, is a congruence of X^* such that X^*/θ is isomorphic to G. If $L = \phi^{-1}(e)$, then $\theta = P_L$ is the syntactic congruence of L and syn(L) is isomorphic to G.

If $vw, u \in L$, then, since G is group or a group with 0, e = [v][w] = [u]. Consequently, [vuw] = [v][u][w] = [v][w] = e. Therefore $vuw \in L$ and L is ins-closed.

If vuw, $u \in L$, then [v][u][w] = e = [u]. Since e = [u] is the identity of G, e = [v][u][w] = [v][w]. Hence $vw \in L$ and L is del-closed.

If $vw, vuw \in L$, then [v][w] = [v][u][w] = e. If $[v]^{-1}$ and $[w]^{-1}$ are the inverses of [v] and [w], then: $e = [v]^{-1}[v][u][w][w]^{-1} = [u]$. Therefore $u \in L$ and L is dip-closed.

A monoid with a disjunctive identity is either simple or 0-simple (see [5]). However such a monoid is not necessarily a group or a group with zero. For example, the bicyclic monoid B is simple and its identity 1 is disjunctive. However B is not a group.

Since the bicyclic monoid has a disjunctive identity, we can use Lemma 2.1 and Proposition 2.2 to construct a c-simple insertion-closed and deletion-closed language L_B , called the *bicyclic language*, having B as its syntactic monoid. Since B is finitely generated, the alphabet of the language L_B is also finite.

Recall that the bicyclic monoid B can be defined in the following way (see for example [1]). If N denotes the set of the non-negative integers, then $B = N \times N$ with the product defined by: (m, n)(r, s) = (m + r - min(n, r), n + s - min(n, r)). The element (0,0) is the identity element of B and B is generated by the pair a = (1,0) and b = (0,1). Let $X = \{a,b\}$, let X^* be the free monoid generated by X, let e = (0,0) and let ϕ be the canonical morphism of X^* onto B. Then the language $L_B = \phi^{-1}(e)$ is an ins-closed language such that syn(L) is isomorphic to B.

The language L_B is del-closed. Suppose that $uwv, w \in L_B$. Then $\phi(w) = e = \phi(uwv) = \phi(u)\phi(w)\phi(v) = \phi(u)\phi(v) = \phi(uv)$. Consequently, $uv \in \phi^{-1}(e) = L_B$, and hence L_B is del-closed. The language L_B is not dip-closed. Indeed,

it is easy to verify that (0,1)(1,0) = (0,0) and (0,1)(1,1)(1,0) = (0,0). If $c = \phi^{-1}((1,1))$, then in X^* we have $ba \in L_B$ and $bca \in L_B$. If L_B were dip-closed, we would have $c \in L_B$, i.e. (1,1) = (0,0), which is impossible.

The next example is a language that is ins-closed, but not del-closed, not dip-closed and not c-simple. Let $X = \{a, b\}$ and $L = X^* \setminus \{a, a^2\}$. Clearly L is ins-closed. Since $a.a^3.a, a^3 \in L$, but $a^2 \notin L$, L is not del-closed. Since $a.a^2, a.a.a^2 \in L$, but $a \notin L$, it follows that L is not dip-closed. The language L is not c-simple. Indeed, we have $a.b.1 \in L$ with $b \in L$, hence $a.L.1 \cap L \neq \emptyset$. If L were c-simple, this would imply $a.L.1 \subseteq L$. Since $1 \in L$, we have $a = a.1.1 \in L$, a contradiction.

3 Dipolar-closed languages

Properties of insertion-closed and deletion-closed languages have been thoroughly studied in [4]. The aim of this section is to complete this investigation by studying properties of the related dipolar-closed languages. First we give some examples of dipolar-closed languages.

Examples. (1) Let $X = \{a, b\}$ and let m, n be two fixed positive integers. Let $L(a, m, b, n) = \{u \in X^* | |u|_a = km, |u|_b = kn\}$, where k is a positive integer. Then L(a, m, b, n) is dip-closed, ins-closed and del-closed. Special case: $L_{ab} = L(a, 1, b, 1)$.

- (2) Given a language L, Sub(L) is a dip-closed language. Special case: L = Sub(L). For example, the language $L = \{1, a, b, ab\}$ is dip-closed, del-closed but not ins-closed.
- (3) Let L be an outfix code, i.e. $L \subseteq X^+$ and $u_1u_2, u_1xu_2 \in L$ implies x = 1. Then $L \cup \{1\}$ is dip-closed, but not ins-closed.
- (4) Let L be an ideal of X^* , $L \neq X^*$. Then $L^c = X^* \backslash L$ is dip-closed, but in general not ins-closed or del-closed. Take for example $X = \{a, b, c\}$ and $L = X^*abX^*$. Then L^c is dip-closed, but not ins-closed since $a, b \in L^c$ with $ab \notin L^c$, and not del-closed since $acb, c \in L^c$ with $ab \notin L^c$.
- (5) Let X such that $|X| \geq 2$ and let $Y \subseteq X$, $Y \neq X$, be a nonempty subalphabet of X. Then $L = Y^*$ is dip-closed, ins-closed and del-closed. In particular, a^* is dip-closed for all $a \in X$.

Proposition 3.1 Let L be a dipolar-closed language. If L is c-simple, then L is insertion-closed and deletion-closed.

Proof. Since L is dip-closed, $1 \in L$. If $uv, w \in L$, then $u.1.v \in L$ and since L is c-simple, this implies $uLv \subseteq L$ and $uwv \in L$.

Suppose that $w \in L$ and $uwv \in L$. Since L is c-simple, $uLv \subseteq L$. From $1 \in L$ follows $uv \in L$ and hence L is del-closed.

A language that is dip-closed and del-closed is not in general ins-closed. For example, take $L = \{1, u\}, u \neq 1$.

It is easy to see that the family of dip-closed languages is closed under intersection and inverse homomorphism, but, as the next result shows, it is not closed under other basic operations of formal languages.

Proposition 3.2 The family of dipolar-closed languages is not closed under union, complementation, catenation, catenation closure, homomorphism and intersection with regular languages.

Proof. Let $X = \{a, b\}$.

Union: Let $L_1 = \{1, aba\}$ and $L_2 = \{1, a^2\}$. Then both L_1 and L_2 are dip-closed, but the union $L_3 = \{1, a^2, aba\}$ is not. Indeed $a.a \in L_3$, $a.b.a \in L_3$, but $b \notin L_3$.

Complementation: Let $L = a^*$. Then L is dip-closed. We have $b^2, bab \in L^c$, but $a \notin L^c$ and hence L^c is not dip-closed.

Catenation: Let $L = \{1, ab\}$. Then L is dip-closed and $L^2 = \{1, ab, abab\}$. We have $a.b, a.ba.b \in L^2$, but $ba \notin L^2$. Hence L^2 is not dip-closed.

Catenation closure: Let $L = \{1, ab\}$. Then a.b, $a.ba.b \in L^*$, but $ba \notin L^*$. Hence L^* is not dip-closed.

Homomorphism: Let $L = a^*, \phi(a) = ab$ and $\phi(b) = b$. Then $\phi(L) = (ab)^*$ that is not dip-closed, because $ab, a.ba.b \in \phi(L)$ but $ba \notin \phi(L)$.

Intersection with regular languages: Let $L = \{1, a, b, ab\}$ and $R = \{1, b, ab\}$. Then L is dip-closed, R is regular and $L \cap R = R$ is not dip-closed.

Proposition 3.3 Let $u, v \in X^+, u \neq v$. Then there exists a dipolar-closed language L such that:

- (i) $u \in L, v \notin L$;
- (ii) if L' is a dipolar-closed language such that $L \subseteq L'$ and $v \notin L'$, then L' = L.

Proof. The language $L_u = \{1, u\}$ is dip-closed and $v \notin L_u$.

Let $DP(L) = \{L_i | i \in I\}$ be the family of dip-closed languages L_i containing u with $v \notin L_i$. Let $\cdots \subseteq L_j \subseteq \cdots$, $j \in I$, be a chain of languages L_j with $L_j \in DP(L)$ and let $U = \bigcup_{j \in I} L_j$. If $rs, rxs \in U$, then $rs \in L_i$ and $rxs \in L_j$ where L_i and L_j are in the chain. Hence there exists a language L_k in the chain such that $L_i, L_j \subseteq L_k$ and $rs, rxs \in L_k$. Therefore $x \in L_k \subseteq U$ and U is dip-closed.

If $v \in U$, then $v \in L_j$ for some $j \in I$, a contradiction. Since the union of languages from any chain in DP(L) is also an language in DP(L), we can apply the Zorn's lemma. Therefore there exists a maximal dip-closed language, say L, such that $u \in L, v \notin L$ and this implies (ii).

Let $L \subseteq X^*$ and let $M(L) = \{x \in X^* | \exists u = x_1vx_2 \in L, v \in X^*, x = x_1x_2\}$. In other words, M(L) contains words which are the catenation of a prefix and suffix of the same word in L. To the language L one can associate the set dip(L) consisting of all words $x \in X^*$ with the following property: x is in M(L) and

the dipolar deletion of x from any word of L yields words belonging to L. (The condition $x \in M(L)$ has been added so that dip(L) does not contain irrelevant words, such as words that cannot be deleted from any word of L.) Formally, dip(L) is defined by:

$$dip(L) = \{x \in M(L) | u \in L, u = x_1 v x_2, x = x_1 x_2 \Longrightarrow v \in L\}.$$

Examples. Let $X = \{a, b\}$. Then $dip(X^*) = X^*$ and

- $-dip(L_{ab}) = L_{ab}.$
- if $L = \{a^n b^n | n \ge 0\}$ then dip(L) = L.
- if $L = b^*ab^*$ then $dip(L) = b^*$.

Remark that, if $L \subseteq X^*$ then $x,y \in dip(L)$ and $xy \in M(L)$ imply $xy \in dip(L)$. In particular, if M(L) is a submonoid of X^* , then dip(L) is a submonoid of X^* .

In the following we show how, for a given language L, the set dip(L) can be constructed. The construction involves the deletion operation which is, in some sense, inverse to the dipolar deletion operation.

Proposition 3.4 Let $L \subseteq X^*$. Then $dip(L) = (L \longrightarrow L^c)^c \cap M(L)$.

Proof. Let $x \in dip(L)$. From the definition of dip(L) it follows that $x \in M(L)$. Assume now that $x \notin (L \longrightarrow L^c)^c$. This means there exist $u \in L$ such that $u = x_1vx_2$, $x = x_1x_2$ and $v \in L^c$. We arrived at a contradiction as $x \in dip(L)$, $x_1vx_2 \in L$, $x = x_1x_2$ but $v \notin L$.

For the other inclusion, let $x \in (L \longrightarrow L^c)^c \cap M(L)$. As $x \in M(L)$, if $x \notin dip(L)$ there exist $x_1ux_2 \in L$ such that $x = x_1x_2$ but $u \notin L$. This further implies that $x \in (L \longrightarrow L^c)$ - a contradiction with the initial assumption about x.

Corollary 3.1 If L is regular then dip(L) is regular and can be effectively constructed.

Proof. It follows from the fact that the family of regular languages is closed under complementation, intersection and deletion, the proofs are constructive (see [11], [9]) and, moreover the set M(L) can be effectively constructed.

Notice that a language $L \subseteq X^*$ is dip-closed iff $L \rightleftharpoons L \subseteq L$.

Proposition 3.5 Let $L \subseteq X^*$ be an insertion-closed language. Then L is dipolar-closed if and only if $L = (L \rightleftharpoons L)$.

Proof. Since L is dip-closed, $L \rightleftharpoons L \subseteq L$. Now let $u \in L$. Since L is ins-closed, $uu \in L$. Therefore, $u \in (L \rightleftharpoons L)$. We can conclude that $L = (L \rightleftharpoons L)$. The other implication is obvious.

If L is a nonempty language, then the intersection of all the dip-closed languages containing L is a dip-closed language called the *dip-closure* of L. The dip-closure of L is the smallest dip-closed language containing L.

We will now define a sequence of languages whose union is the dipolar-closure of a given language L. Let $D_0(L) = L \cup \{1\}$, $D_{k+1}(L) = D_k(L) \rightleftharpoons D_k(L)$, $k \ge 0$. Clearly $D_k(L) \subseteq D_{k+1}(L)$. Let

$$D(L) = \bigcup_{k \ge 0} D_k(L).$$

Proposition 3.6 D(L) is the dipolar-closure of the language L.

Proof. Clearly $L \subseteq D(L)$. Let now $u_1u_2 \in D(L)$ and $u_1vu_2 \in D(L)$. Then $u_1u_2 \in D_i(L)$ and $u_1vu_2 \in D_j(L)$ for some integers $i, j \geq 0$. If $k = max\{i, j\}$, then $u_1u_2 \in D_k(L)$ and $u_1vu_2 \in D_k(L)$. This implies $v \in D_{k+1}(L) \subseteq D(L)$. Therefore D(L) is a dip-closed language containing L.

Let T be a dip-closed language such that $L = D_0(L) \subseteq T$. Since T is dip-closed, if $D_k(L) \subseteq T$ then $D_{k+1}(L) \subseteq T$. By an induction argument, it follows that $D(L) \subseteq T$.

Since, by [9], the family of regular languages is closed under dipolar deletion, it follows that if L is regular, then the languages $D_k(L)$, $k \geq 0$, are also regular. The following result shows that D(L) is regular for any regular language L.

Recall that, when the principal congruence P_L of a language L has a finite index (finite number of classes), the language L is regular.

Proposition 3.7 If $L \subseteq X^*$ is regular then its dipolar closure is regular.

Proof. We show that if $u \equiv v(P_{D_k(L)})$ then $u \equiv v(P_{D_{k+1}(L)})$. Let $u \equiv v(P_{D_k(L)})$ and let $xuy \in D_{k+1}(L)$. Then, there exists a word $\alpha_1 xuy\alpha_2 \in D_k(L)$ such that $\alpha_1\alpha_2 \in D_k(L)$. From the fact that $u \equiv v(P_{D_k(L)})$ and that $P_{D_k(L)}$ is a congruence, we deduce that $\alpha_1 xuy\alpha_2 \equiv \alpha_1 xvy\alpha_2(P_{D_k}(L))$. Since $D_k(L)$ is a union of classes of $P_{D_k(L)}$, it follows then that $\alpha_1 xvy\alpha_2 \in D_k(L)$. This further implies that $xvy \in D_{k+1}(L)$. In the same way, $xvy \in D_{k+1}(L)$ implies $xuy \in D_{k+1}(L)$. Consequently, $u \equiv v(P_{D_{k+1}(L)})$ holds. This means that the number of congruence classes of $P_{D_k(L)}$ is smaller or equal to that of $P_{D_k(L)}$. Therefore, since the index of $P_{D_k}(L)$ is finite, there exists an integer t such that $P_{D_t}(L) = P_{D_{t+k}}(L), k \geq 1$. For every $i \geq 0$, $D_i(L) \subseteq D_{i+1}(L)$ and $D_i(L)$ is a union of classes of $P_{D_i}(L)$. Therefore $D(L) = D_t(L)$ and consequently, D(L) is regular.

References

[1] A.H. Clifford and G.B. Preston. The Algebraic Theory of Semigroups. *Math. Surveys Series*, Vol. 1 and 2, Amer. Math. Soc., Providence (1961, 1967).

- [2] R. Croisot. Equivalences principales bilatères définies dans un demi-groupe. J. Math. Pures Appl. (9), 36, 1957, pp.373-417.
- [3] P. Dubreil. Contribution à la théorie des demi-groupes. Mém. Acd. Sci. Inst. France. (2) 63, 1941, 52 pp.
- [4] M. Ito, L. Kari and G. Thierrin. Insertion and deletion closure of languages. To appear in *TCS*.
- [5] H. Jurgensen, H.J. H.J. Shyr and G. Thierrin. Monoids with disjunctive identity. *Acta Mathematica Hungarica* 47(1986), pp.299-312.
- [6] L. Kari. On insertion and deletion in formal languages. Ph.D. Thesis, University of Turku (1991).
- [7] L.Kari. On language equations with invertible operations. *Theoretical Computer Science*, 132(1994), pp.129-150.
- [8] L. Kari. Insertion and deletion of words: determinism and reversibility. *Lecture Notes in Computer Science* 629(1992), pp.315-327.
- [9] L. Kari. Deletion operations: closure properties. *Intern.J. Computer Math.*, 52(1994), 23-42.
- [10] G. Lallement. Semigroups and Combinatorial Applications. John Wiley, New York 1979.
- [11] A. Salomaa. Formal languages. Academic Press, New York, 1973.
- [12] H.J. Shyr. Free monoids and languages. Lecture Notes, Institute of Applied Mathematics, National Chung-Hsing University, Taichung, Taiwan (1991).